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Distinct distributed patterns of neural activity are
associated with two languages in the bilingual brain
Min Xu,1,2 Daniel Baldauf,3,4 Chun Qi Chang,1,2 Robert Desimone,3* Li Hai Tan1,2*

A large body of previous neuroimaging studies suggests that multiple languages are processed and organized
in a single neuroanatomical system in the bilingual brain, although differential activation may be seen in some
studies because of different proficiency levels and/or age of acquisition of the two languages. However, one
important possibility is that the two languages may involve interleaved but functionally independent neural
populations within a given cortical region, and thus, distinct patterns of neural computations may be pivotal
for the processing of the two languages. Using functional magnetic resonance imaging (fMRI) and multivariate
pattern analyses, we tested this possibility in Chinese-English bilinguals when they performed an implicit read-
ing task. We found a broad network of regions wherein the two languages evoked different patterns of activity,
with only partially overlapping patterns of voxels in a given region. These regions, including the middle occip-
ital cortices, fusiform gyri, and lateral temporal, temporoparietal, and prefrontal cortices, are associated with
multiple aspects of language processing. The results suggest the functional independence of neural computa-
tions underlying the representations of different languages in bilinguals.
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INTRODUCTION
The human brain has been equipped with a marked ability to acquire
more than one language, as in bilingual individuals. However, it re-
mains unsolved as to how different languages are represented in the
bilingual brain (1–4). A large body of neuroimaging studies has sug-
gested that multiple languages are processed and organized in a single
brain system (5–7) [but see related studies (8–10)]. Brain areas are ac-
tivated to a comparable degree when bilinguals performed tasks in the
first (L1) and second (L2) languages at both the word level and the
sentence level (11–19), although differential activation may be seen
in some studies because of different proficiency levels and/or age of
acquisition of the two languages (8, 15, 20, 21).

The traditional single cortical mechanism hypothesis assumes that
shared regions are recruited for processing L1 and L2, but one impor-
tant possibility is that the two languages may involve interleaved but
functionally independent neural populations, and thus, distinct
patterns of neural computations may be pivotal for the processing
of the two languages. Bilingual speakers are able to use each of their
languages appropriately and swiftly switch from one language to the
other. It is therefore reasonable to hypothesize that there might be
some degree of segregation in the neural representations of each
language to avoid cross-talk (22, 23). In the typically used univariate
analysis of functional neuroimaging data, images are spatially
smoothed, and each voxel is treated independently, which leads to loss
of fine-grained pattern information (24, 25). Multivariate pattern
analysis (MVPA) extracts the signal that is present in the pattern of
response across multiple voxels, and it could therefore resolve this
problem by operating on patterns of neural activation and by directly
linking activation patterns to experimental conditions (24, 26, 27). It is
suited for detecting fine-grained pattern differences even if they occur
in the absence of regional-average differences (28).
Here, we used MVPA and investigated whether the neural repre-
sentations of L1 were distinguishable from those of L2 by analyzing
the pattern of functional magnetic resonance imaging (fMRI) blood-
oxygen-level dependent (BOLD) signals in Chinese-English bilin-
guals. We used an implicit word-processing task in which the
subjects pressed a key when two consecutive words were the same
(Fig. 1). The implicit reading task does not ask for explicit reading,
but reading occurs obligatorily, and it provides comparable proces-
sing demands for different groups of subjects or conditions (29, 30).
By using region of interest (ROI)–based and searchlight-based
MVPA, we found a broad network of regions wherein the two lan-
guages evoked different patterns of activity.
RESULTS
Behavioral results
Reaction time and accuracy data were submitted to repeated-measures
analysis of variance (ANOVA). The results showed that there was no
significant effect for reaction time [F(3, 33) = 0.61, P = 0.613], but
there was a significant effect for accuracy [F(3,33) = 6.328, P < 0.01].
Followed-up paired t tests revealed greater accuracy for Chinese real
words than Chinese false fonts [t(11) = 3.3, P < 0.01)] and English
false fonts [t(11) = 3.4, P < 0.01] and greater accuracy for English real
words than English false fonts [t(11) = 2.9, P < 0.05]. There were no
significant differences in accuracy between Chinese real words and
English real words [t(11) = 1.33, P = 0.21], between Chinese false
fonts and English false fonts [t(11) = 0.54, P = 0.60], and between
Chinese false fonts and English real words [t(11) = 2.13, P = 0.06]
(as shown in Fig. 1B).

Multivoxel classification of L1 and L2
We first conducted MVPA to discriminate between L1 real words and
L2 real words on the basis of ROIs that were consistently reported to be
involved in reading and language processing according to previous
studies (31–36), including the lateral occipital cortex (LOC; inferior/
middle occipital cortex), fusiform gyrus (FusiG), lateral temporal cortex
(LTC; superior/middle temporal gyri), temporoparietal cortex (TPC; supra-
marginal/angular gyri/inferior parietal lobule), and lateral prefrontal
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cortex (LPFC; inferior/middle frontal gyri) (fig. S1). Both the left and
right hemispheric ROIs were defined. The results showed that the
classification accuracies based on individual ROIs and the whole
brain (WB) were all significantly greater than chance level (50%) after
corrections for multiple comparisons (Fig. 2A): LOC [left: t(13) = 29.3,
P < 0.0001; right: t(13) = 19.4, P < 0.0001]; FusiG [left: t(13) = 21.6, P <
0.0001; right: t(13) = 13.4, P < 0.0001]; LTC [left: t(13) = 10.2, P < 0.0001;
right: t(13) = 5.4, P < 0.001]; TPC [left: t(13) = 11.0, P < 0.0001; right:
t(13) = 3.0, P < 0.05]; LPFC [left: t(13) = 9.7, P < 0.0001; right, t(13) =
4.5, P < 0.001]; and WB [t(13) = 13.4, P < 0.0001]. We next per-
formed a repeated-measures ANOVA with ROIs and the hemispheres
as within-subject factors to explore hemispheric differences. Results re-
vealed a significant main effect of hemisphere [F(1,13) = 43.7, P <
0.0001] and region [F(4, 52) = 22.3, P < 0.001]. There was a significant
hemisphere × region interaction [F(4, 52) = 3.7, P < 0.05], indicating
that the hemispheric effect was not the same across ROIs. To explore
this, we performed post hoc paired t tests in each ROI separately and
found that four ROIs showed significantly greater accuracies in the left
than the right hemisphere: FusiG [t(13) = 2.6, P < 0.05]; LTC [t(13) =
3.8, P < 0.01]; TPC [t(13) = 5.1, P < 0.001]; and LPFC [t(13) = 3.6, P <
0.01], indicating that the left hemispheric ROIs carried more discrimi-
native information than their right hemispheric counterparts. In con-
trast, there was no hemispheric difference in classification accuracy in
LOC [t(13) = 1.4,P=0.19]. To further examinewhether classification of
L1 versus L2wasmainly determined by positive BOLDresponse or neg-
ative BOLD response, we extracted the b values of the most informative
voxels in the left hemispheric ROIs (see Materials and Methods). The
analysis revealed that the classification accuracies were determined both
by voxels with positive BOLD responses (36 to 74% of voxels across
ROIs) and by voxels with negative BOLD responses (26 to 64%of voxels
across ROIs) (fig. S2).

Searchlight MVPA
To ensure that we did not overlook any anatomical regions that were
sensitive to L1 and L2, we used a “searchlight” approach to identify
regions of high classification accuracy throughout the brain (37). As
shown in Fig. 2B, analyses with a 4-mm-radius searchlight revealed
left-lateralized discriminative patterns, with significant searchlight
Xu et al., Sci. Adv. 2017;3 : e1603309 12 July 2017
centers located in the bilateral occipital cortex and fusiform gyri
{peak at Montreal Neurological Institute (MNI) coordinates [−44
−64 −8] and [40 –70 −14]}, bilateral inferior and middle frontal gyri
([−46 12 28] and [54 28 8]), left TPC ([−58 −34 28]), and bilateral
superior and middle temporal gyri ([−46 4 −4] and [58 −28 2]). This
analysis also revealed sensitivity of the bilateral superior parietal lobule/
precuneus (peak at [−24 −66 34] and [30–74 38]) in distinguishing be-
tween L1 and L2. Therefore, in the following analyses, left and right
superior parietal cortices (SPCs; superior parietal lobule/precuneus)
were also included as ROIs.

Univariate analyses for L1 versus L2
Univariate analyses were conducted to facilitate comparisons between
pattern-based and voxel-based analyses. We found several small
clusters that showed greater activity for L2 real words than L1 real
words in the left inferior frontal gyrus, left occipitotemporal cortex,
and left precuneus (Fig. 3 and table S1), whereas no greater activity
was found for L1 than L2, indicating that brain activation elicited by
L1 and L2 overlapped substantially. Relative to univariate analyses,
MVPA revealed markedly widespread brain regions that could suc-
cessfully discriminate between L1 and L2 by incorporating the signal
from multiple voxels.

Discriminative information in the ROIs
First, to examine whether the discriminative information concerns only
low-level visual complexities that are distinct for the two languages, we
applied the classifiers trained to distinguish between L1 and L2 real
words to classify L1 and L2 false fonts (seeMaterials andMethods). Be-
cause the false fonts have similar structure and complexity to the real
words but contain no linguistic features, the generation of activation
Fig. 1. Examples of experimental stimuli andbehavioral performance. (A) Examples
of Chinese real words, English real words, Chinese false fonts, and English false fonts
used in the task. (B) Mean reaction time and accuracy rate for the four conditions.
Error bars depict SEM. n.s., not significant.
Fig. 2. MVPA results for classification of L1 real words versus L2 real words.
(A) Classification accuracies for the left (red bar) and right (blue bar) hemispheric
ROIs. Error bars depict SEM. Significance markings for individual bars indicate
above-chance (50%) classification accuracy; significance marking between bars
indicates significant difference between left and right hemispheric ROIs. *P <
0.05; **P < 0.01; ***P < 0.001. (B) Searchlight MVPA results presented as a T-map
indicating the statistical significance of voxel-wise classification accuracies against
the chance level [P < 0.001, false discovery rate (FDR)–corrected, equivalent to t = 5.2].
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patterns between real words and false fonts may indicate that L1 and L2
real words are distinguished on the basis of their visual complexity
rather than differences in linguistic features of the two languages. As
shown in Fig. 4, accuracies for classifying L1 and L2 real words were
significantly greater than chance formost of the ROIs except in the right
TPC and right LPFC. The accuracies in this step were lower than those
obtained in the above ROI analyses, as shown in Fig. 2A, which may be
due to less training data used (24). Accuracies for classifying L1 false
fonts and L2 false fonts were statistically significant only in the right
FusiG [t(13) = 2.9, P < 0.05] but not in any other ROI. We then per-
formed a correlation analysis between the accuracies for classifying L1
and L2 real words and the accuracies for classifying L1 andL2 false fonts
across ROIs. The result shows that the correlation is not significant (r =
0.238, P = 0.434) (fig. S3), suggesting that the regions containing the
most discriminative information for L1 real words versus L2 real words
do not necessarily contain the most discriminative information for L1
false fonts versus L2 false fonts. Correlation analyses were also per-
formedwithin each ROI to examine whether the accuracies for classify-
ing real words correlated with the accuracies for classifying false fonts of
the two languages across subjects.We found significant correlation only
in the right FusiG (r = 0.576, P = 0.031) but not in any other ROI. These
results suggested that inmost of the ROIs, activity patterns distinguishing
between L1 real words and L2 real words were not based on low-level
visual complexity.

Second, the frontal and parietal regions that we defined as language
ROIs also belong to the domain-general frontoparietal executive
network, which has been shown to decode different aspects of task
demands and materials [see the study of Woolgar et al. (38) for a re-
cent review]. To examine whether the voxels within these ROIs re-
sponded more strongly to words than false fonts, we performed a
univariate analysis on (Chinese real words + English real words) ver-
sus (Chinese false fonts + English false fonts). The activation maps
(threshold set at P < 0.05, FDR-corrected at voxel level) were masked
by the anatomical ROIs of LPFC, TPC, and SPCs, respectively.We then
Xu et al., Sci. Adv. 2017;3 : e1603309 12 July 2017
compared the number of voxels that activated for real words − false
fonts (language-responsive) and the number of voxels that activated
for false fonts − real words (cognitive demand–sensitive) [for a similar
rationale, see the study of Fedorenko et al. (39)]. Results showed that
there were much more language-responsive than cognitive demand–
sensitive voxels in the LPFC (1940 versus 338) and TPC (1319 versus
599), suggesting that these two ROIs may distinguish between L1 and
L2 more on the basis of the language-related information. In contrast,
there were much fewer language-responsive voxels in the SPC (555 ver-
sus 1718), indicating that this region may rely more on the domain-gen-
eral information to distinguish between the two languages.

Spatial distribution of the most informative voxels coding
for L1 and L2
To examine the extent to which themost informative voxels coding for
L1were separated from those for L2, we performed classifiers in the left
hemispheric ROIs for the two languages separately: L1 real words ver-
sus L1 false fonts (L1 discrimination) and L2 real words versus L2 false
fonts (L2 discrimination). We found high classification accuracies for
both L1 discrimination (90.6 to 97.6%) and L2 discrimination (84.4 to
96.6%) in all ROIs (fig. S4). We then generated maps for the best-
coding voxels by including voxels whose weights exceeded 2 SD in
the group analysis. The most informative voxels coding for L1 were
spatially separated from those for L2 mainly in the left FusiG, LTC,
TPC, LPFC, and SPC (Fig. 5, B to F), with separation percentages as
follows: FusiG, 96.5%; LTC, 79.7%; TPC, 74.8%; LPFC, 67.3%; and
SPC, 72.5% (the number of best-coding voxels surviving threshold is
reported in table S2). In addition, we found considerable overlap of in-
formative voxels between the two languagesmainly in the left LOC (Fig.
5A; separation percentage, 50.1%). To facilitate a comparison between
the univariate approach andMVPA, we followed a similar procedure to
calculate the separation percentages for the univariatemethod in the left
hemispheric ROIs. The separation percentages for individual ROIs
yielded from the univariate analysis are as follows: LOC, 9.6%; FusiG,
Fig. 3. Cortical activation associated with L2 real words minus L1 real words revealed by the univariate analysis (P < 0.05, FDR-corrected, equivalent to t = 5.0).
No significant activation was found for L1 real words minus L2 real words.
Fig. 4. Accuracies for classifying real words (left) and false fonts (right) between different languages using SVM classifier trained to discriminate between L1
and L2 real words. Error bars depict SEM. Significant above-chance (50%) classification accuracy is indicated by asterisks. *P < 0.05; **P < 0.01; ***P < 0.001.
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32.3%; LTC, 30.0%; TPC, 22.5%; LPFC, 28.5%; and SPC, 28.3% (fig. S5
and table S3), which are much less than those from MVPA.
 on July 17, 2017
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DISCUSSION
Previous neuroimaging studies using the traditional univariate
analyses have consistently found overlapping regions for L1 and
L2 [for example, (11–19)]. Here, by using a more fine-grained
MVPA technique, our study has demonstrated that different lan-
guages were processed in common regions but in distinguishable
patterns of response, implicating that functionally independent
neural populations are involved (28). Segregation in the neural rep-
resentations of each language might be crucial for bilingual speakers
to appropriately use each language and avoid cross-talk.

Previous aphasic and neurosurgical studies have supported dis-
tinct brain systems for different languages in bilinguals. Observations
of brain-damaged patients showed that brain injuries may produce
selective impairments of only one language in bilinguals and that pa-
tients may recover one language but not the other (40–45). Neuro-
surgical studies have also identified language-specific areas in
dominant frontal, parietal, and temporal regions because electrical
stimulation of these sites produces interferences in only one language
and not in any other (46–50). Our findings may provide some implica-
tions for the evidence from neuroimaging and aphasic/neurosurgical
studies. TheMVPA that we used here discriminates neural represen-
tations of different languages by taking into account the relation-
ships across voxels, whereas the univariate method previously used
examines only changes in the gross neural activity andmay therefore
fail to detect the important differential patterns. Meanwhile, our
results suggest that L1 and L2 are represented in specific patterns that
involve neuronal populations in the critical regions to different
degrees, such that electrical stimulation or inhibition of the neuron
populations crucial for one language could cause interference of that
language but not the other.
Xu et al., Sci. Adv. 2017;3 : e1603309 12 July 2017
One question to address is what sort of information decoded by
the brain distinguishes between L1 and L2. The implicit reading task
that we used here is not designed to address any specific aspect of
language processing, and thus, different brain regions that show dis-
tinct neural patterns may be associated with different levels of
language processing. Written Chinese presents sharp contrast to
English in terms of orthographic features and how the written symbols
map onto sounds and semantics (51, 52). Therefore, information
about the visual appearance, orthography, phonology, and semantics
of the word stimuli could be used to classify the two languages. Chinese
characters are formed with intricate strokes filled in square config-
urations, as opposed to the linear structure of alphabetic words. This
difference may lead to the neural separations in the LOCs and the
fusiform gyri for the representations of visual features and ortho-
graphic properties (30, 34, 36, 53) and in the SPCs for fine-grained
visuospatial representations of written words in the two languages
(54, 55). Moreover, Chinese characters map directly to monosyllables
in an arbitrary way with tonal information that convey different mean-
ings of words, whereas English is a nontonal language, and words are
predominantly read out by assembling the phonemic components
(32, 56). Distinct neural patterns in the temporal and lateral prefrontal
cortices for the two languagesmay thus reflect their differences in pho-
nological representations and in the mapping from written symbols
to sound andmeaning (31, 33, 35, 36).We also found that the distinct
patterns for L1 and L2 inmost regions are unlikely to reflect different
visual complexities of the two languages because the support vector
machine (SVM) classifier trained to discriminate between response
patterns of Chinese real words and English real words failed to classify
their corresponding false-font stimuli in all ROIs, except in the right
FusiG, which may be recruited for holistic and configural analysis of
the stimulus (57). Therefore, the differences in linguistic features
might contribute to the discrimination between the two languages.
Further research will need to more specifically examine the nature of
the discriminative information, including comparing the auditory
versus visual representations of words, to know whether the map-
ping between written forms and sound/meaning contributes to the
classification.

Previous studies usingMVPA to classify L1 and L2 have focused on
specific sets of regions and produced inconsistent results (58–60). For
example, Willms et al. (58) found no difference in multivoxel patterns
for L1 and L2 in Spanish-English bilinguals, but they performed
MVPA on ROIs restricted to these regions that showed greater activity
for verb than noun processing in both L1 and L2. Therewas little overlap
between the voxels in the ROIs and those in the regions that showed an
interaction effect of language and grammatical class. Thus, the brain
areas that were likely to distinguish between L1 and L2were not included
in the MVPA in the study. In another study, Bai et al. (60) found similar
spatial patterns of response in visual word form areas to different lan-
guages in Korean-Chinese bilinguals, which is inconsistent with our
results. One possibility is that written words of Korean and Chinese
are both in square shape, and it might therefore be more difficult to
discriminate them in the fusiform areas. An alternative (but not mutu-
ally exclusive) explanation is that Bai et al. (60) performed MVPA
based on very restricted ROIs (6-mm radius centered at the peak of
Chinese + Korean − fixation), whereas we used the whole FusiG as a
priori anatomical ROIs. A recent study by Hsu et al. (59) investigated
the emotional aspect of language processing and found distinguishable
patterns for L1 and L2 inGerman-English bilinguals in emotion-related
regions. Because these regions are not closely associated with language
Fig. 5. Spatial distribution of the most informative voxels coding for L1 and
L2. The maps show the best-coding voxels for L1 discrimination (red), L2 discrim-
ination (blue), and their overlap (yellow) in the left hemispheric LOC (A), FusiG (B),
LTC (C), TPC (D), LPFC (E), and SPC (F).
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processing, the study does not necessarily address the question of pat-
tern differences between L1 and L2 per se.

Note that our findings do not imply that there are no shared
representations for different languages in the bilingual brain. On
the contrary, we identified a number of subsets of informative voxels
overlapping for L1 and L2. This was consistent with previous MVPA
findings that representations of semantic information can be generalized
between L1 and L2 (61, 62) and with results from studies using fMRI
adaptation paradigms that found language-independent semantic
representations in the left lateral prefrontal (63, 64) and temporal
regions (18, 63).

Together, we demonstrated here that L1 and L2 could be neuro-
anatomically separated by widely distributed patterns of activity using
the pattern analysis technique. The finding may provide new leverage
points for examining the underlying neural processes for different
languages and thus offers an insight into the links between brain rep-
resentations and language disorders in bilinguals. We note that the
present study has limitations that should be addressed in the future. For
example, although the subjects’ behavioral performance on the task
was comparable for L1 and L2, nonequivalent proficiency of L1 and
L2 might have confounded the MVPA results. Further research is
needed to more specifically examine the nature of these signals related
to L1 and L2 in various brain areas, including whether they aremodu-
lated by proficiency and age of acquisition.
 on July 17, 2017
ttp://advances.sciencem

ag.org/
MATERIALS AND METHODS
Subjects
Fourteen bilingual subjects (12 females) were recruited in our experi-
ment (aged 23 to 33 years; mean = 26.5, SD = 3.3). They were native
Mandarin Chinese speakers fromChina andwere studying or working
in the Boston area during the time of scanning. The subjects had started
to learn English as their L2 between 6 and 15 years of age. They com-
pleted a language-background questionnaire (65) and were measured
of L2 proficiency using Peabody Picture Vocabulary Test (PPVT4)
(mean score = 149.2, SD = 28.5). The subjects were physically healthy
and free of neurological disease, head injury, and psychiatric disorder.
They were right-handed, as assessed by the handedness inventory. The
study was approved by the ethics committee at the Massachusetts In-
stitute of Technology (MIT), and all subjects gave informed consent
before the experiments.

Design and materials
The subjects performed an implicit word-processing task, in which they
were presented with a sequence of words and required to press a key
when two consecutive words were the same. The task was simple,
providing comparable processing demands for L1 and L2. Animal
words and actionwords were used for both languages. TomatchChinese
words and English words in length, we chose Chinese words contain-
ing two characters (average number of phonemes = 4.9, SD = 0.9;
mean frequency = 11.5 per million) and English words containing
three to six letters (average number of syllables = 1.1, SD= 0.3; average
number of phonemes = 3.3, SD = 0.7; mean frequency = 26.5 per mil-
lion). Chinese words were the closest possible translation of the English
words, and thus, they werematched formeaning. The subjects also per-
formed the task with false fonts, which were constructed by scrambling
the strokes of the words used in the real-word conditions. With this
method, the false fonts have a similar complexity to the real words
but contain no linguistic features (Fig. 1A). The subjects underwent
Xu et al., Sci. Adv. 2017;3 : e1603309 12 July 2017
six to eight functional runs. There were four blocks for each condition
within each run, and condition order was counterbalanced. Each block
consisted of 16 stimuli, among which 2 would be the same as the last
one.On each trial, a white stimuluswas displayed on the center of a gray
background for 700ms, followed by a 300-ms blank interval. To reduce
practice effects, we used two different sets of stimulus items alternatively
among different runs. All subjects had some practice before scanning,
and they were instructed to perform as quickly and accurately as pos-
sible. We failed to record two subjects’ behavioral responses, and
thus, the behavioral results were based on data from the remaining
12 subjects. Their behavioral performance under each condition is
illustrated in Fig. 1B.

MRI acquisition
Functional images were acquired using a 3T Siemens MRI scanner
with a 32-channel head coil at the Athinoula A. Martinos Imaging
Center at MIT. A gradient–echo echo planar imaging (EPI) sequence
was used (TR (repetition time)/TE (echo time) = 2000/30 ms; flip
angle = 90°; voxel size of 3.1 × 3.1 × 3, with a 0.3-mm gap). Visual
stimuli were presented through a projector onto a translucent
screen, and subjects viewed the screen through a mirror attached
to the head coil.

fMRI data preprocessing and univariate analysis
We used the Statistical Parametric Mapping software package
(SPM8) (www.fil.ion.ucl.ac.uk/spm/) for preprocessing. Functional
images were realigned to the first volume of the first functional scan
to remove movement artifact. They were then spatially normalized
to an EPI template based on the International Consortium for Brain
Mapping (ICBM) 152 stereotactic space. Voxels were resampled at a vox-
el size of 2 × 2 × 2 mm3. For the MVPA, functional images were not
spatially smoothed. For the univariate analyses, an isotropic Gaussian
kernel of 8 mm full width at half maximum (FWHM) was applied for
spatial smoothing. The preprocessed images were passed to a general
linear modeling (GLM), which was used to obtain parameter estimate
(b) images associated with each stimulus condition. GLM was con-
structed with experimental regressors modeled as boxcar function and
convolved with a canonical hemodynamic response function. Realign-
ment parameters were included in the model to regress out movement-
related variance. Each time series was high-pass–filtered with a cutoff
period set at 128 s to remove low-frequency drifts. For the univariate
analysis, contrast images were generated for each subject and were then
used to create group contrast images at the second level.

Multivoxel pattern analyses
A linear support vector machine (LibSVM; regularization parameter
C = 1) was performed using PRoNTo (for ROI approach) (66) and
the Decoding Toolbox (for searchlight approach) (67). The b images
were extracted for each run separately and used as input for the clas-
sifiers. We calculated the accuracy for classification using a leave-
one-session-out cross-validation procedure. For MVPA based on
ROIs, an SVM was trained and tested separately on WB and each
ROI. Anatomical ROIs were generated using the Wake Forest Uni-
versity PickAtlas. For the statistical tests of classification accuracies
across ROIs, results were corrected for multiple comparisons using
FDR at P = 0.05 following the Benjamini-Hochberg procedure. To
examine whether the classification accuracies of L1 and L2 were
determined by positive BOLD response, negative BOLD response,
or a combination of the two, we extracted the b values of the most
5 of 7
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informative voxels. Linear SVM assigns a weight to each voxel that
indicates its importance in the classification. The most informative
voxels were defined as those voxels whose weights exceeded ±2 SD in
the group analysis. We calculated the percentages of voxels with pos-
itive BOLD response (positive b value) and negative BOLD response
(negative b value), as well as the averaged b values for each left hemi-
spheric ROI.

In searchlight-based MVPA, a spherical searchlight with a radius
of 4 mmwasmoved across the entire brain by taking each voxel in the
volume as the searchlight center. For each sphere, a linear SVM was
trained and tested as described above, and the classification accuracy
scorewas assigned to the central voxel. TheWBclassification accuracy
maps of individual subjects were spatially smoothed at 6-mm FWHM
andwere then subjected to random-effect group analysis. The resulted
T-map indicated the statistical significance of voxel-wise accuracies
against a chance-level accuracy of 50%. The T-map was thresholded
at P < 0.001 and FDR-corrected.

To test whether the discriminative information concerns only low-
level visual complexities that are distinct for L1 words and L2 words,
we trained SVM classifiers to discriminate between response patterns
of L1 real words and L2 real words and tested their predictive capacity
for discriminating between L1 false fonts and L2 false fonts. We split
the data set into two parts, with the first half as training data and the
second half as testing data. The SVM classifiers were trained with the
first half of real words, and the trained classifiers were then applied to
predict the second half of real words and false fonts separately.

Finally, to examine spatial distributions of the most informative
voxels coding for L1 and L2, we performed SVM classifiers using
leave-one-session-out cross-validation for the two languages sepa-
rately: L1 real words versus L1 false fonts (L1 discrimination) and
L2 real words versus L2 false fonts (L2 discrimination). We gener-
ated maps for the left hemispheric ROIs to include the most inform-
ative voxels whose weights exceeded 2 SD in the group analysis. To
quantify the different spatial distributions of informative voxels be-
tween L1 and L2, percentages of unique voxels were calculated for
each language by dividing the number of unique voxels (that is, voxels
for one language that do not show overlap with the other language)
by the total number of voxels surviving threshold. Separation percen-
tages were then calculated by averaging percentages of unique voxels
for L1 and L2, that is, (L1unique/L1 + L2unique/L2)/2. To compare the
degrees of spatial separation of L1 versus L2 using different approaches,
we followed a similar procedure as in the MVPA to calculate the sepa-
ration percentages in the univariate analysis. Contrast images of L1 real
words minus L1 false fonts and L2 real words minus L2 false fonts were
generated for each subject, and at the second-level analysis, anatomical
ROIs were used as masks to create group contrast images. The most
activated voxels with activation levels exceeding 2 SD in the group
analysis were used to calculate separation percentages.
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